Combinatorial Number Problem

Problem Description

The combinatorial number $\binom{n}{m}$ indicates the number of options to sele t m items out of n c

items. For example, choosing two items out of three items (1,2,3) can be done in three ways: (1,2),(1,3),(2,3). Based on the definition of combinatorial numbers, we can give a general formula for calculating the combinatorial number:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Where $n!= 1 \times 2 \times ... \times n$; In particular, define 0!= 1.

Xiaocong wants to know if given n, m and k, for all $0 \le i \le n$, $0 \le j \le \min(i, m)$, how many pairs of (i, j) satisfy that $k | {i \choose j}$.

Input

The first line has two integers t and k, where t represents how many sets of test data there are in total at that test point. The meaning of k is described in the problem description.

Next t lines each have two integers n and m, and the meanings of n and m are shown in the problem description.

Output

There are t lines, each line with an integer representing $0 \le i \le n$, $0 \le j \le \min(i,m)$. how many pairs of the (i, j) with $k | {i \choose j}$.

```
Sample Input 1
1 2
3 3
```

```
Sample Output 1
```

```
Sample Input 2
```

25 45 67

Sample Output 2

0

Hint [Explanation of Sample 1]

Of all the possible cases, only $\binom{2}{1} = 2$ is a multiple of 2.

Test Point	n	m	k	t
1	≤ 3	≤ 3	= 2	= 1
2			= 3	≤ 10 ⁴
3	≤ 7	≤ 7	= 4	= 1
4			= 5	$\leq 10^{4}$
5	≤ 10	≤ 10	= 6	= 1
6			= 7	≤ 10 ⁴
7	≤ 20	≤ 100	= 8	= 1
8			= 9	$\leq 10^4$
9	≤ 25	≤ 2000	= 10	= 1
10			= 11	$\leq 10^{4}$
11	≤ 60	≤ 20	= 12	= 1
12			= 13	$\leq 10^4$
13	≤ 100	≤ 25	= 14	= 1
14			= 15	$\leq 10^{4}$
15		≤ 60	= 16	= 1
16			= 17	$\leq 10^{4}$
17	≤ 2000	≤ 100	= 18	= 1
18			= 19	≤ 10 ⁴
19		≤ 2000	= 20	= 1
20			= 21	$\leq 10^{4}$

[Subtask]

- For all test points, make sure $0 \le n$, $m \le 2 \times 10^3$, $1 \le t \le 10^4$.